PINK1-Parkin-Mediated Mitophagy Protects Mitochondrial Integrity and Prevents Metabolic Stress-Induced Endothelial Injury
نویسندگان
چکیده
Mitochondrial injury and dysfunction, a significant feature in metabolic syndrome, triggers endothelial cell dysfunction and cell death. Increasing evidence suggests that mitophagy, a process of autophagic turnover of damaged mitochondria, maintains mitochondrial integrity. PINK1 (phosphatase and tensin homolog (PTEN)-induced putative kinase 1) and Parkin signaling is a key pathway in mitophagy control. In this study, we examined whether this pathway could protect mitochondria under metabolic stress. We found that palmitic acid (PA) induced significant mitophagy and activated PINK1 and Parkin in endothelial cells. Knocking down PINK1 or Parkin reduced mitophagy, leading to impaired clearance of damaged mitochondria and intracellular accumulation of mitochondrial fragments. Furthermore, PINK1 and Parkin prevented PA-induced mitochondrial dysfunction, ROS production and apoptosis. Finally, we show that PINK1 and Parkin were up-regulated in vascular wall of obese mice and diabetic mice. Our study demonstrates that PINK1-Parkin pathway is activated in response to metabolic stress. Through induction of mitophagy, this pathway protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury.
منابع مشابه
FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy
Oxidative stress has been implicated in triggering granulosa cell (GC) death during follicular atresia. Recent studies suggested that follicle-stimulating hormone (FSH) has a pivotal role in protecting GCs from oxidative injury, although the exact mechanism remains largely unknown. Here, we report that FSH promotes GC survival by inhibiting oxidative stress-induced mitophagy. The loss of GC via...
متن کاملNix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease
Therapeutic targets are needed to develop neuroprotective treatments for Parkinson's disease (PD). Mitophagy, the selective autophagic elimination of dysfunctional mitochondria, is essential for the maintenance of mitochondrial integrity and is predominantly regulated by the PINK1/Parkin-mediated pathway. Loss of function mutations in Parkin and PINK1 cause an accumulation of dysfunctional mito...
متن کاملMitochondrial targeted HSP90 inhibitor Gamitrinib-TPP (G-TPP) induces PINK1/Parkin-dependent mitophagy
Loss-of-function mutations in PINK1 or PARKIN are associated with early-onset Parkinson's disease. Upon mitochondrial stress, PINK1 and Parkin together mediate a response that protects cells from the accumulation of harmful, damaged mitochondria. PINK1, the upstream kinase accumulates on the mitochondrial surface and recruits the E3 ubiquitin ligase Parkin on site to ubiquitylate substrate prot...
متن کاملMitochondrial fission facilitates the selective mitophagy of protein aggregates
Within the mitochondrial matrix, protein aggregation activates the mitochondrial unfolded protein response and PINK1-Parkin-mediated mitophagy to mitigate proteotoxicity. We explore how autophagy eliminates protein aggregates from within mitochondria and the role of mitochondrial fission in mitophagy. We show that PINK1 recruits Parkin onto mitochondrial subdomains after actinonin-induced mitoc...
متن کاملHepatitis C Virus Induces the Mitochondrial Translocation of Parkin and Subsequent Mitophagy
Hepatitis C Virus (HCV) induces intracellular events that trigger mitochondrial dysfunction and promote host metabolic alterations. Here, we investigated selective autophagic degradation of mitochondria (mitophagy) in HCV-infected cells. HCV infection stimulated Parkin and PINK1 gene expression, induced perinuclear clustering of mitochondria, and promoted mitochondrial translocation of Parkin, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015